
django-background-tasks
Documentation

Release latest

Oct 18, 2018

Contents

1 Installation 3

2 Supported versions and compatibility 5

3 Creating and registering tasks 7

4 Repeating Tasks 9

5 Multiple Queues 11

6 Running tasks 13

7 Settings 15

8 Task errors 17

9 Known issues 19

10 Example project 21

11 Tests 23

12 Contributing 25

i

ii

django-background-tasks Documentation, Release latest

Django Background Task is a databased-backed work queue for Django, loosely based around Ruby’s DelayedJob
library. This project was adopted and adapted from this repo.

To avoid conflicts on PyPI we renamed it to django-background-tasks (plural). For an easy upgrade from django-
background-task to django-background-tasks, the internal module structure were left untouched.

In Django Background Task, all tasks are implemented as functions (or any other callable).

There are two parts to using background tasks:

• creating the task functions and registering them with the scheduler

• setup a cron task (or long running process) to execute the tasks

Contents 1

http://www.djangoproject.com/
http://github.com/tobi/delayed_job
https://github.com/lilspikey/django-background-task

django-background-tasks Documentation, Release latest

2 Contents

CHAPTER 1

Installation

Install from PyPI:

pip install django-background-tasks

Add to INSTALLED_APPS:

INSTALLED_APPS = (
...
'background_task',
...

)

Migrate your database:

python manage.py migrate

3

django-background-tasks Documentation, Release latest

4 Chapter 1. Installation

CHAPTER 2

Supported versions and compatibility

• Python: 2.7, 3.4-3.7

• Django: 1.8, 1.11, 2.1, 2.2

Full Django LTS to LTS compatibility through django-compat.

Note: Django 1.8 is an expired LTS release. It’s not advisable to use this version of Django anymore.

5

https://github.com/arteria/django-compat

django-background-tasks Documentation, Release latest

6 Chapter 2. Supported versions and compatibility

CHAPTER 3

Creating and registering tasks

To register a task use the background decorator:

from background_task import background
from django.contrib.auth.models import User

@background(schedule=60)
def notify_user(user_id):

lookup user by id and send them a message
user = User.objects.get(pk=user_id)
user.email_user('Here is a notification', 'You have been notified')

This will convert the notify_user into a background task function. When you call it from regular code it will actually
create a Task object and stores it in the database. The database then contains serialised information about which
function actually needs running later on. This does place limits on the parameters that can be passed when calling the
function - they must all be serializable as JSON. Hence why in the example above a user_id is passed rather than a
User object.

Calling notify_user as normal will schedule the original function to be run 60 seconds from now:

notify_user(user.id)

This is the default schedule time (as set in the decorator), but it can be overridden:

notify_user(user.id, schedule=90) # 90 seconds from now
notify_user(user.id, schedule=timedelta(minutes=20)) # 20 minutes from now
notify_user(user.id, schedule=timezone.now()) # at a specific time

Also you can run original function right now in synchronous mode:

notify_user.now(user.id) # launch a notify_user function and wait for it
notify_user = notify_user.now # revert task function back to normal function.
→˓Useful for testing.

You can specify a verbose name and a creator when scheduling a task:

7

django-background-tasks Documentation, Release latest

notify_user(user.id, verbose_name="Notify user", creator=user)

The creator is stored as a GenericForeignKey, so any model may be used.

To get the functions decorated by background picked up by the auto discovery mechanism, they must be placed in
a file named tasks.py in your module, eg. myapp/tasks.py.

8 Chapter 3. Creating and registering tasks

CHAPTER 4

Repeating Tasks

Repeating tasks can be initialized like this:

notify_user(user.id, repeat=<number of seconds>, repeat_until=<datetime or None>)

When a repeating task completes successfully, a new Task with an offset of repeat is scheduled. On the other hand,
if a repeating task fails and is not restarted, the repetition chain is stopped.

repeat is given in seconds. The following constants are provided: Task.NEVER (default), Task.HOURLY,
Task.DAILY, Task.WEEKLY, Task.EVERY_2_WEEKS, Task.EVERY_4_WEEKS.

The time offset is computed from the initially scheduled time of the original task, not the time the task was actually
executed. If the process command is interrupted, the interval between the original task and its repetition may be shorter
than repeat.

9

django-background-tasks Documentation, Release latest

10 Chapter 4. Repeating Tasks

CHAPTER 5

Multiple Queues

You can pass a queue name to the background decorator:

@background(queue='my-queue')
def notify_user(user_id):

...

If you run the command process_tasks with the option --queue <queue_name> you can restrict the tasks
processed to the given queue.

11

django-background-tasks Documentation, Release latest

12 Chapter 5. Multiple Queues

CHAPTER 6

Running tasks

There is a management command to run tasks that have been scheduled:

python manage.py process_tasks

This will simply poll the database queue every few seconds to see if there is a new task to run.

The process_tasks management command has the following options:

• duration - Run task for this many seconds (0 or less to run forever) - default is 0

• sleep - Sleep for this many seconds before checking for new tasks (if none were found) - default is 5

• log-std - Redirect stdout and stderr to the logging system

You can use the duration option for simple process control, by running the management command via a cron job
and setting the duration to the time till cron calls the command again. This way if the command fails it will get
restarted by the cron job later anyway. It also avoids having to worry about resource/memory leaks too much. The
alternative is to use a grown-up program like supervisord to handle this for you.

13

http://supervisord.org/

django-background-tasks Documentation, Release latest

14 Chapter 6. Running tasks

CHAPTER 7

Settings

There are a few settings options that can be set in your settings.py file.

• MAX_ATTEMPTS - controls how many times a task will be attempted (default 25)

• MAX_RUN_TIME - maximum possible task run time, after which tasks will be unlocked and tried again (default
3600 seconds)

• BACKGROUND_TASK_RUN_ASYNC - If True, will run the tasks asynchronous. This means the tasks will be
processed in parallel (at the same time) instead of processing one by one (one after the other).

• BACKGROUND_TASK_ASYNC_THREADS - Specifies number of concurrent threads. Default is
multiprocessing.cpu_count().

• BACKGROUND_TASK_PRIORITY_ORDERING - Control the ordering of tasks in the queue. Default is
"DESC" (tasks with a higher number are processed first). Choose "ASC" to switch to the “niceness” ordering.
A niceness of 20 is the highest priority and 19 is the lowest priority.

15

https://en.wikipedia.org/wiki/Nice_(Unix)

django-background-tasks Documentation, Release latest

16 Chapter 7. Settings

CHAPTER 8

Task errors

Tasks are retried if they fail and the error recorded in last_error (and logged). A task is retried as it may be a temporary
issue, such as a transient network problem. However each time a task is retried it is retried later and later, using an
exponential back off, based on the number of attempts:

(attempts ** 4) + 5

This means that initially the task will be tried again a few seconds later. After four attempts the task is tried again 261
seconds later (about four minutes). At twenty five attempts the task will not be tried again for nearly four days! It is
not unheard of for a transient error to last a long time and this behavior is intended to stop tasks that are triggering
errors constantly (i.e. due to a coding error) form dominating task processing. You should probably monitor the task
queue to check for tasks that have errors. After MAX_ATTEMPTS the task will be marked as failed and will not be
rescheduled again.

17

django-background-tasks Documentation, Release latest

18 Chapter 8. Task errors

CHAPTER 9

Known issues

• django.db.utils.OperationalError: database is locked when using SQLite. This is a
SQLite specific error, see https://docs.djangoproject.com/en/dev/ref/databases/#database-is-locked-errors for
more details.

19

https://docs.djangoproject.com/en/dev/ref/databases/#database-is-locked-errors

django-background-tasks Documentation, Release latest

20 Chapter 9. Known issues

CHAPTER 10

Example project

Hiroaki Nakamura has written an example project demonstrating how django-background-tasks works. You find it
here.

21

https://github.com/hnakamur/django-background-tasks-example/

django-background-tasks Documentation, Release latest

22 Chapter 10. Example project

CHAPTER 11

Tests

You can run the test suite on all supported versions of Django and Python:

$ tox

23

django-background-tasks Documentation, Release latest

24 Chapter 11. Tests

CHAPTER 12

Contributing

Anyone and everyone is welcome to contribute. Please take a moment to review the guidelines for contributing.

25

https://github.com/arteria/django-background-tasks/blob/master/CONTRIBUTING.md

	Installation
	Supported versions and compatibility
	Creating and registering tasks
	Repeating Tasks
	Multiple Queues
	Running tasks
	Settings
	Task errors
	Known issues
	Example project
	Tests
	Contributing

